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Abstract—Pitch sequences in baseball reflect a pitcher’s tactical
intent, yet existing tools often overlook their structure by focusing
only on frequency or location. This paper presents P3VS, an
interactive visualization system that models each at-bat as an
ordered trajectory of pitch zones, enriched with pitch type,
velocity, and outcome. Using a modified Levenshtein Distance,
the system clusters recurring sequence patterns and visualizes
them as networks. Users can filter sequences by zone, pitcher,
batter stance, and outcome to explore differences across contexts.
P3VS supports real-time, outcome-specific analysis and reveals
structural variations in pitch sequences that may influence game
results.

Index Terms—Baseball Analysis, Visualization, Interactive
Web Application, User Interface.

I. INTRODUCTION

Baseball strategy encompasses a wide range of elements,
including base running, defensive positioning, and pitching.
Among these, pitching plays a key role, as the sequence and
selection of pitches directly influence the outcome of each at-
bat and the overall flow of the game. For analysts, sequence-
level data provides insights into pitcher intent and tactical
decision-making. For viewers, understanding pitch sequences
deepens engagement by building anticipation. This need has
become more pronounced in recent years, as pitch types have
diversified, new breaking balls such as sweepers have emerged,
and high-velocity fastballs have become more common across
the league [[1], [2]. These developments emphasize the growing
importance of analyzing pitch sequences rather than treating
each pitch as an isolated event.

Although various tools and studies have been developed
to support baseball analysis [3[]-[5], most focus on pitch
frequency or location independently and overlook the se-
quential structure of pitch combinations. While some studies
acknowledge the importance of pitch order [6]—[8]], they
typically analyze only short-term or pairwise relationships,
without modeling pitch sequences as structured patterns. Few
systems provide interactive or visual tools for exploring these
sequences. Our previous work [9] also focused solely on the
order of pitch locations, without incorporating pitch type or
enabling interactive exploration.

To address these limitations, we propose a system called
P3VS (Pitcher Pitching Patterns Visualization System). It
represents pitch sequences as trajectories, defined as ordered
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series of pitches annotated with pitch type, velocity, and at-
bat outcome. Using clustering techniques, the system extracts
recurring strategic patterns and visualizes them through an in-
teractive interface. Users can filter sequences by zone, pitcher,
and outcome, and explore them in real time. The system also
highlights differences associated with specific at-bat results,
such as strikeouts or hits.
The main contributions of this work are:

o A method for modeling pitch sequences as trajectories
that integrate pitch type, velocity, and location to extract
strategic patterns through clustering.

« An interactive system that enables real-time exploration
of pitch sequences filtered by zone, pitcher, and outcome.

o A visualization method that enables users to compare
pitch sequences across different outcomes, such as strike-
outs or hits, to identify strategic differences.

II. RELATED WORK

Research on pitching behavior has primarily focused on
pitch type and location [6], [7]]. Roegele [§] and Clemens [10]
highlighted the strategic importance of pitch sequencing. Our
prior system [9]] clustered pitch sequences based solely on
pitch location order and visualized them using network dia-
grams. Tools such as Baseball4D [4]], Statcast Dashboard [5]],
VideoLens [11]], Bloomberg Sports [12], Pitcher Plinko [13],
and ESPN [14] provide visualizations of pitching trends
and spatial data. However, these systems primarily focus
on frequency-based or spatial analysis and generally do not
capture the sequential nature of pitch sequences or support
in-game reasoning. In contrast, our approach integrates pitch
type, velocity, and outcome into a unified representation to
support structural analysis and interactive exploration.

Other studies have modeled pitch selection as a decision-
making process. Cox et al. [15] applied the Matching Law to
explain pitch choices through reinforcement theory. Nakahara
et al. [16] used stratified analysis with propensity scores to
assess pitch effectiveness, and Hoffmann et al. [[17] simulated
at-bats to optimize decisions between pitchers and batters.
However, these models treat pitches as independent events,
overlooking the sequence-level structure underlying in-game
strategies. Instead of treating pitches as isolated events, our



method analyzes the structure of entire pitch sequences to
reveal how pitchers build their strategy across an at-bat.

In other sports domains, tactical visual analytics systems
have been developed to explore evolving patterns and strat-
egy. Hooplnsight [18] compares basketball shooting strategies
across players. In racket sports, systems such as iTTVis [19],
Tac-Simur [20], and TacticFlow [21]] visualize temporal tac-
tical changes. Surveys on sports visualization [22]-[24] em-
phasize the importance of interactivity, structural awareness,
and domain-specific design. However, few systems explicitly
address the sequential nature of pitch combinations in baseball.
Our system fills this gap by enabling users to explore pitch
intent and flow through clustered trajectory patterns grounded
in real game contexts.

III. PROPOSED SYSTEM
A. System Requirements

Our system supports a broad range of users, including casual
viewers, analysts, commentators, sportswriters and baseball
researchers. Based on domain-specific tasks and prior expe-
rience, we define the following requirements for interactive
analysis of pitching sequence trajectories.

R1. Zone-Based Filtering and Sequence Extraction:
When investigating pitching patterns, users often start by
selecting specific zones of interest. Yet, most existing tools
do not support sequence filtering based on zone combinations.
The system should allow the selection of one or more zones
to extract relevant trajectories, facilitating intuitive, scenario-
based exploration.

R2. Discovery of Strategic Pitch Patterns: Pitch sequences
reflect strategies, but such patterns are hard to extract from raw
data. The system should support clustering to reveal represen-
tative sequence structures employed in various contexts.

R3. Outcome-Aware Visualization: Understanding how
sequences relate to outcomes (e.g., strikeouts, hits) is crucial,
yet most systems do not support this linkage. The system must
enable filtering and comparison by result category to assess the
effectiveness of pitch sequence strategies.

R4. Interactive and Real-Time Exploration: Real-time
exploration is important during live games and broadcasts, but
static tools limit in-game analysis. The system should support
interactive filtering, clustering, and visualization updates.

RS. Parameter Customization for Expert Analysis: To
support expert-level and scenario-specific analysis, the system
must allow users to specify key input parameters such as
pitcher name, season, batter stance, number of clusters, and at-
bat outcome categories. In addition, the system should enable
detailed filtering and clustering across multiple dimensions
including pitch type, speed, and location.

B. System Overview

Our previously developed system visualized pitch combina-
tions by clustering sequences based on the order of pitching
locations [9]. While this approach effectively summarized
sequencing tendencies, it was limited to post-game analysis
and lacked real-time and interactive capabilities. In this study,

we redefine a pitch sequence as a trajectory composed of
an ordered list of pitch zones with additional attributes such
as pitch type, velocity, and outcome. We extract structural
patterns from these trajectories using clustering. The updated
version of P3VS introduces zone-based filtering, outcome-
specific visualization, and live interactivity, enabling more
flexible and user-driven exploration.

Figure [I] illustrates the system interface. Users first specify
input parameters, including pitcher name, season, batter stance
(all, left-handed, or right-handed), number of clusters, and
at-bat outcome categories (Figure ) (R5). Based on these
inputs, the system retrieves the corresponding pitch data and
constructs trajectory sequences for each at-bat (Figure [2 (i)).
Users then select specific zones via the Zone Selection panel
(Figure [IB) (R1), which filters the data to include only trajec-
tories that begin in the selected zones. The system calculates
the distances between filtered pitch sequences (Figure [2| (ii)),
performs clustering (Figure 2] (iii)), and visualizes the resulting
pitch sequence patterns (Figure [2] (iv)) (R2). This allows users
to understand how pitchers structure their pitch sequences.

The system also supports outcome-based filtering, allowing
users to compare clustered trajectory patterns across different
at-bat results, such as strikeouts or outs (Figure [IC) (R3).
The system supports dynamic updates in response to user
interaction, making it suitable for live gameplay analysis (R4).
P3VS is built using Daslﬂ and Dash CytoscapeE] allowing
browser-based deployment with responsive and interactive
network visualizations. The following subsections describe
each system component in detail.

C. Pitching Sequence Trajectory Data Extraction

We utilized pitch-by-pitch data from Baseball Savant [25] a
comprehensive dataset containing approximately 100 variables
describing pitch characteristics, game context, and at-bat out-
comes. The data were provided in CSV format, and the key
attributes used in our analysis are listed in Table [l Among
them, the zone attribute specifies where the pitch crossed home
plate, based on a 13-zone classification system comprising nine
strike zones (a through i) and four ball zones (j through m)
(Figure [3] left). To ensure consistency, we flipped the default
catcher’s viewpoint to the pitcher’s perspective. The events
attribute records the result of each at-bat, such as a strikeout
or home run.

Before extracting trajectories, the dataset is filtered based
on user selections, including pitcher, season, batter stance
(right-handed, left-handed, or all), and outcome category (e.g.,
strikeout, hit). The system supports multiple seasons and
outcome types simultaneously (Figure [IJA). We then extract
pitching sequence trajectories using the method proposed by
Miyagi et al. [26], which detects recurring patterns in general
sequential data. In this study, we apply their approach to
sequences of pitch zones. For example, a sequence of pitches
thrown to zones m, m, e, and m is represented as the trajectory
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Fig. 1. User interface of P3VS. (A) Filtering options, (B) Zone selection panel, (C) Visualization of clustered trajectory patterns by at-bat outcome (All, Out

and StrikeOut).
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Fig. 2. Clustering process from pitching sequence trajectories to pattern visualization.
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Fig. 3. Extraction of pitch trajectories from pitch-by-pitch data.

mmem (Figure [3). We excluded all single-pitch sequences and
analyzed only those consisting of two or more pitches.

D. Zone Selection

We developed a zone selection feature that allows users to
filter pitching sequence trajectory data based on an ordered
sequence of selected zones (Figure [I|B). Selecting a zone

filters the trajectory data described in Section [[II-C| The
interface, built with Dash Cytoscape, arranges 13 nodes (a
to m) based on the zone table in Figure |§| (left). This zone
layout is based on [25]. Zones a to i (strike zone) are shown
in orange, and j to m (out-of-zone) are shown in light blue.

When a node is selected, the system extracts trajectories
that begin with the selected zone sequence. For example, if the
user selects zone m first and zone m second, only trajectories
beginning with mm are extracted, and the corresponding edge
m-m is displayed (Figure [I]B).

The Zone Selection panel also includes three buttons:
Start runs the analysis; Reset resets the interface; and Elbow
displays the elbow method results for selecting the optimal
number of clusters.



TABLE I

SELECTED ATTRIBUTES FROM THE BASEBALL SAVANT DATASET.
Attribute Description
game_date Date of the game
batter MLB player ID of the batter
pitcher MLB player ID of the pitcher
zone Zone where the pitch crossed home plate
stand Batter’s stance (R = Right-handed, L = Left-handed)
inning Inning number

inning_topbot
effective_speed

Half-inning indicator (Top or Bottom)
Pitch speed at the plate (mph), adjusted for extension

pitch_name Pitch type (e.g., Four-Seam Fastball, Slider)
pfx_x Horizontal movement (inches)

pfx_z Vertical movement (inches)

game_pk Unique game identifier

at_bat_number
pitch_number
events

At-bat number within the game
Pitch number within the at-bat
At-bat result (e.g., strikeout, single)

E. Trajectory Clustering

To quantify similarity between pitching sequence trajec-
tories, we adopted a modified Levenshtein Distance frame-
work. Pairwise distances were calculated based on location,
pitch type and speed. The Levenshtein Distance measures
the minimum number of insertions, deletions, or substitutions
to convert one sequence S; into another S, where smaller
values indicate higher similarity. For example, the distance
between mmem and mmmfj is 3, with two substitutions and
one insertion (Figure [). Substitution costs were assigned
based on the degree of difference between elements, while
insertion and deletion costs were kept uniform. These costs
were weighted and normalized to ensure comparability across
different factors.

Zone Distance, Pitch Type and Speed. Understanding
the spatial relationship between pitch zones is crucial for
analyzing how pitchers structure their sequences. Transitions
between zones, such as moving from outside to inside, often
carry strategic intent. However, previous systems [9]] assigned
uniform costs to all transitions, ignoring physical distance and
overlooking subtle spatial patterns. To address this, we define
zone distance as the Euclidean distance between zone coor-
dinates. This spatial metric captures relative placement differ-
ences and enables more fine-grained analysis than uniform-
cost approaches.

As shown in Figure [5] we grouped pitch types into Fastball,
Offspeed, Curveball Group, and Slider Group based on the
classification from Baseball Savant [25]. We computed the
average horizontal and vertical movement (pfx_x, pfx_z) for
each pitch type per pitcher, and used the Euclidean distance
between the corresponding centroids when types differed. This
approach reflects physical and strategic differences between
pitch types, improving over uniform-cost methods. For exam-
ple, Fastball (F) and Curveball Group (C) are positioned far
apart, indicating distinct characteristics, while Fastball (F) and
Offspeed (O) are close together, suggesting similar movement.

We categorized pitch speed into Slow, Middle, and High
based on each pitcher’s individual speed distribution. Substi-
tution costs varied according to these categories, allowing for
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Fig. 5. Pitch Type Grouping and Similarity: Pitch types are classified into
four functional groups. Inter-type similarity is assessed based on average pitch
movement in horizontal and vertical dimensions.

finer comparisons across pitchers.

Integrated Distance and Clustering. We applied K-
medoids clustering to group pitch sequences using an inte-
grated distance matrix that combines location, pitch type, and
speed. Unlike K-means, K-medoids supports heterogeneous
data and selects actual sequences as cluster centers. This
approach groups structurally similar sequences and extracts
pitch sequence patterns.

F. Visualization of Pitching Sequence Trajectory Data

We visualized the clustering results using network diagrams,
where each network represents a trajectory cluster composed
of ordered pitch zone sequences from individual at-bats. For
example, the trajectory mmem (Figure [3) produces the nodes
and edges listed in Table [l We used an undirected graph
model, treating bidirectional edges such as e-m and m-e as a
single edge (e-m).

TABLE II
NODES, EDGES, AND FREQUENCIES FOR TRAJECTORY mmem.
Nodes e, m
Edges m-m, m-e, e-m

Node frequencies
Edge frequencies

e:1l,m:3
e-m: 2, m-m: 1

We generated the visualizations using NetworkXE] drawing
one network per cluster (Figure [T[C). The 13 pitch zones (a
to m) were initially placed based on the strike zone layout
in Figure [IB. Node size was scaled based on the frequency
within each cluster (100x frequency), and edge thickness and
color also reflected cluster-specific frequencies: red for strike-
to-strike, green for strike-to-ball, and blue for ball-to-ball tran-

3https:/networkx.org
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Fig. 6. Left: Original layout. Right: Adjusted layout.

sitions. To reduce clutter, only edges with a frequency of two
or more were displayed. Self-loops, which indicate consecutive
pitches to the same zone, were omitted at rendering time to
improve visual clarity.

Since the original layout led to overlapping elements (e.g.,
edge e-m overlapping with j-m), we manually adjusted node
positions (e.g., b, d, e, f, and h) for readability (Figure @

P3VS also supports clustering and visualization of pitching
sequence trajectories by at-bat result. The events attribute
was categorized into five outcome groups (Table I}, and the
same visualization method was applied. Users can filter by
outcome using checkboxes in the interface (Figure [TIA).

Figure [T] shows an example where outcomes “Out” and
“StrikeOut” were selected, and trajectories beginning with mm
were visualized separately for each outcome, enabling direct
comparison. In this figure, (al) and (a2) show “All” outcomes,
(b1) and (b2) “Out,” and (c1) and (c2) “StrikeOut.”

TABLE III
AT-BAT RESULT CATEGORIES BASED ON THE EVENTS ATTRIBUTE.

Category Included results

StrikeOut strikeout

Out field_out, double_play, force_out, etc.
BaseHit single, double, triple

‘Walk walk, hit_by_pitch

HomeRun  home_run

IV. CASE STUDIES

This section presents a case study using P3VS. We analyzed
23 pitchers: the top 20 by pitch volume from 2018 to 2024,
plus Shohei Ohtani, Yu Darvish, and Yusei Kikuchﬂ As an
initial example, we examined all pitches by Kikuchi during
this period (Figure [/) to illustrate the overall structure and
functionality of P3VS. The visualization shows frequent use
of outer zones such as j and m, providing a basis for selecting
a specific zone (e.g., j) to explore subsequent pitch sequences.

Figure [§] shows pitch sequences starting from zone j, clus-
tered by outcome. In (al) (Out), transitions spread across
zones such as d, f, and h, suggesting a flexible approach.
In (b3) (StrikeOut), strong links from j to m, and then to
e, indicate a focused strategy aimed at inducing swings and
misses. These differences suggest that pitch sequence structure
varies depending on the intended outcome.

Figure [I] shows sequences starting with two pitches to
zone m (“mm”), clustered by outcome. Both categories share

4Currently with the Los Angeles Angels

the edge m—m, but the subsequent sequences diverge. “Out”
sequences tend to transition to zones outside the strike zone,
such as j or [/ (b2), whereas “StrikeOut” sequences frequently
involve the [-m transition and disperse across multiple zones
within the strike zone (c2), as indicated by the dense and
varied green edges. These differences highlight how sequences
with identical openings can vary depending on the intended
or resulting outcome.

Figure [9] presents “HomeRun” pitch sequences clustered
into two groups. The left cluster displays numerous green
edges that start in the out-of-zone regions j and / and flow
into the strike zone. The right cluster, by contrast, concentrates
pitches in the central zones d and e. Both clusters therefore
reveal a common tendency for trajectories to converge on
hittable locations near the heart of the zone.

These examples illustrate how P3VS allows users to inter-
actively explore pitch sequences by specifying starting zones
and filtering by outcomes. This functionality supports the
discovery of strategic patterns and adaptive behaviors that may
not be apparent through traditional aggregate analysis.
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Fig. 7. Exploration of Yusei Kikuchi’s pitch sequences (2019-2024), filtered
by outcome categories “Out” and “StrikeOut.”
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Fig. 8. Pitch sequences starting with zone “j” for Yusei Kikuchi, clustered
into three groups by outcome (“Out” and “StrikeOut”).

V. DISCUSSION

P3VS, in its current form, has several limitations related
to exploration support, visual representation, user interface
design, and data accessibility. This section outlines these issues
and proposes directions for improvement.

While users can freely explore pitch sequences by select-
ing starting zones and outcome categories, the system lacks
interpretive guidance. Key differences or recurring patterns
are not automatically highlighted, and users cannot adjust
visual parameters such as node size or edge thickness. Adding
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Fig. 9. Pitch sequence trajectory clusters for Yusei Kikuchi filtered by
outcome category “HomeRun.”

adjustable controls and basic pattern-emphasis features would
improve clarity and adaptability.

Real-time usage remains challenging, not due to system la-
tency, but because determining pitch location and categorizing
it in real time is inherently difficult. In live settings, reliable
input data is often unavailable right after each pitch, which
limits the system’s applicability for in-game tactical support.

The current system lacks directional edges and does not
visualize pitch attributes such as type, velocity, or movement.
Exploration is also limited to fixed positions (e.g., first or
second pitch), making it difficult to analyze mid-at-bat de-
velopments or decisive finishing pitches. These issues could
be mitigated by adding directionality, encoding pitch attributes
in edge styles, and enabling user-defined starting points.

The interface currently supports pitcher-based filtering not
batter selection, limiting analysis of pitcher—batter dynamics.
Adding batter-level filters would support matchup evaluations.

VI. CONCLUSION

In this paper, we presented P3VS, a system for visualizing
pitch sequence tendencies using data from Baseball Savant.
For future work, we plan to conduct user evaluations to assess
its effectiveness and practical utility, particularly in helping
users better understand individual pitchers’ strategic tenden-
cies. While the current system provides structural insights into
pitch sequences, it does not yet incorporate edge direction,
making it difficult to represent the sequential flow of pitch
decisions. Introducing directed graphs may improve inter-
pretability by more clearly capturing the progression within
each sequence.
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